Communication

Structures and Reactivity of $\mathrm{Zr}(\mathrm{IV})$ Chlorobenzene Complexes

Fan Wu, Aswini K. Dash, and Richard F. Jordan
J. Am. Chem. Soc., 2004, 126 (47), 15360-15361• DOI: 10.1021/ja044303v • Publication Date (Web): 06 November 2004 Downloaded from http://pubs.acs.org on April 5, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 10 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Structures and Reactivity of $\mathrm{Zr}(\mathrm{IV})$ Chlorobenzene Complexes

Fan Wu, Aswini K. Dash, and Richard F. Jordan*
Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637

Received September 18, 2004; E-mail: rfjordan@uchicago.edu

The structures and reactivity of $\mathrm{L}_{n} \mathrm{M}\left(\eta^{1}-\mathrm{XR}\right)$ halocarbon complexes of group 6-11 metals have been studied extensively. ${ }^{1,2}$ Several general reactions have been established for these systems, including substitution of the halocarbon by stronger ligands, $\mathrm{C}-\mathrm{X}$ oxidative addition, nucleophilic displacement of the activated halide, and X -directed $\mathrm{C}-\mathrm{H}$ activation. ${ }^{1,2}$ It has been appreciated for some time that d^{0}-metal $\mathrm{L}_{n} \mathrm{MR}^{\prime+}$ cations, which are active species in olefin polymerization and other reactions, also can be stabilized by halocarbon coordination. ${ }^{3}$ However, little is known about the properties of $\mathrm{d}^{0} \mathrm{~L}_{n} \mathrm{MR}^{\prime}(\mathrm{XR})^{+}$species. ${ }^{4}$ Here, we describe the synthesis, structures, and unusual reactivity of $\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{ZrR}^{\prime}(\mathrm{ClPh})^{+}$ chlorobenzene complexes.

The reaction of $\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{ZrR}^{\prime}{ }_{2}$ with $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ affords $\left[\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{ZrR}^{\prime}\left(\mathrm{ClC}_{6} \mathrm{D}_{5}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ complexes, as shown in eq $1\left(\mathbf{1}-d_{5}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2}=\mathrm{Cp}_{2} ; \mathbf{2} \mathbf{a}-\mathbf{d}-d_{5}, \mathrm{R}^{\prime}=\mathrm{Me}$ and $\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2}=\operatorname{rac}$-(EBI) (2a), $\left.\mathrm{Cp}_{2}(\mathbf{2 b}), \mathrm{Cp}_{2}^{\prime}(\mathbf{2 c}), \mathrm{Cp}_{2}(\mathbf{2 d})\right)^{5,6}$ $\mathbf{1}-d_{5}$ was characterized by X-ray diffraction, while $\mathbf{2 a}-\mathbf{d}-d_{5}$ were characterized by NMR. The cation of $\mathbf{1}-d_{5}$ (Figure 1) adopts a bent metallocene geometry, and the chlorobenzene ligand is η^{1} coordinated via the chlorine. The $\mathrm{Zr}-\mathrm{ClPh}$ distance $(\mathrm{Zr}(1)-\mathrm{Cl}(1)$ $=2.746(1) \AA$) is intermediate between the sums of Zr and Cl covalent radii $\left(2.47 \AA\right.$) and van der Waal radii $(3.23 \AA) .{ }^{7}$ The $\mathrm{C}-\mathrm{Cl}$ distance of the coordinated chlorobenzene (1.773(3) \AA) is not significantly changed from that in gas-phase chlorobenzene (1.737(5) $\AA) .{ }^{8} \mathrm{The} \mathrm{Zr}(1)-\mathrm{Cl}(1)-\mathrm{C}(18)$ angle is $115.0(1)^{\circ}$, and the ClPh ring points away from the benzyl group $(\mathrm{C}(18)-\mathrm{Cl}(1)-\mathrm{Zr}(1)-$ $\mathrm{C}(12)$ dihedral angle $\left.=139.1(2)^{\circ}\right)$. The benzyl ligand is strongly η^{2}-distorted. The $\mathrm{Zr}(1)-\mathrm{C}(11)-\mathrm{C}(12)$ angle is smaller $\left(82.3(2)^{\circ}\right)$, and the $\mathrm{Zr}(1)-\mathrm{C}(12)$ distance is shorter $(2.588(3) \AA)$, compared to the corresponding values in $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left[\mathrm{BPh}_{4}\right]$ (84.9(4) ${ }^{\circ}, 2.648(6) \AA$). ${ }^{9}$ Chlorobenzene is a weaker donor than $\mathrm{CH}_{3} \mathrm{CN}$, making the $\mathrm{Zr}(\mathrm{IV})$ center in $\mathbf{1}-d_{5}$ more electrophilic than that in the $\mathrm{CH}_{3} \mathrm{CN}$ complex and resulting in a stronger $\mathrm{Zr} \cdots \mathrm{Ph}$ interaction.

$$
\begin{equation*}
\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{ZrR}_{2}^{\prime}+\mathrm{Ph}_{3} \mathrm{C}^{\oplus} \xrightarrow[23^{\circ} \mathrm{C}]{\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}} \underset{\substack{ \\\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{Zr}^{\oplus}} \underset{\mathrm{ClC}_{6} \mathrm{D}_{5}, 2 \mathrm{a}-\mathrm{d}-d_{5}}{\stackrel{\mathrm{R}^{\prime}}{ }}+\mathrm{Ph}_{3} \mathrm{CR}^{\prime}}{ } \tag{1}
\end{equation*}
$$

$\mathbf{1}-d_{5}$ and $\mathbf{2 a}-\mathbf{c}-d_{5}$ are stable for several days at $23{ }^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ solution, but only if protected from light. Exposure of $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ solutions of $\mathbf{1}-d_{5}$ and $\mathbf{2 b}, \mathbf{c}-d_{5}$ to room light for 8 days results in $\sim 20 \%$ conversion to dinuclear dicationic complexes [$\left\{\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{Zr}\right.$ -$\left.(\mu-\mathrm{Cl})\}_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]_{2}(\mathbf{4} \mathbf{b}, \mathbf{c})$, which were characterized by X-ray diffraction. ${ }^{10}$ The mechanism of this photochemical reaction is under investigation.

Reaction of $\mathbf{2 d}-d_{5}$ at $23{ }^{\circ} \mathrm{C}$ yielded unexpected results (Scheme 1). After 1 day, 70% of $\mathbf{2 d}-d_{5}$ is converted to a $4 / 1$ mixture of $\left[\mathrm{Cp}^{*} \mathrm{Zr}^{2}\left(\eta^{2}-C, C l-2-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{D}_{4}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\left(5-d_{4}\right)$ and $\left[\left(\eta^{4}, \eta^{1}-\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{Me}_{5} \mathrm{C}_{6} \mathrm{D}_{4}\right) \mathrm{Cp} * \mathrm{ZrCl}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\left(6-d_{4}\right)$, and $\mathrm{CH}_{3} \mathrm{D}$ is formed. A small amount of CH_{4} is also observed, likely due to a minor Cp^{*} ring methyl C-H activation process. ${ }^{11}$ Complex 6- d_{4} grows in with time at the expense of $\mathbf{5}-d_{4}$, and after 8 days, $\mathbf{2 d}-d_{5}$ is completely
consumed and 6- d_{4} is present in 90% yield. A small amount ($<10 \%$) of the chloride complex $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrCl}\left(\mathrm{ClC}_{6} \mathrm{D}_{5}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\left(7-d_{5}\right)$ is also formed. Control experiments show that $7-d_{5}$ is formed by a photochemical process. Exposure of $\mathbf{2 d}-d_{5}$ to a $1000 \mathrm{~W} \mathrm{Hg}-\mathrm{Xe}$ lamp for 1 h yields $7-d_{5}$ in 80% yield, whereas $7-d_{5}$ is not formed when $\mathbf{2 d}-d_{5}$ is protected from light.

Scheme 1

5- d_{4} was prepared independently (100%) from $\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrH}^{+}$via the reaction of $\mathbf{2 d}-d_{5}$ with $1 \mathrm{~atm} \mathrm{H}_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ at $23{ }^{\circ} \mathrm{C}$ for 10 min (Scheme 1). X-ray structural analysis of 5 (from 2d and H_{2} in ClPh) confirmed the dative coordination of the ortho- Cl but was complicated by rotational disorder of the chlorophenyl group. To confirm the identity of $\mathbf{5}$ and the coordination of ortho- Cl , the $\mathrm{CH}_{3}-$ CN adduct, $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Zr}\left(\eta^{2}-\mathrm{C}, \mathrm{Cl}-2-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](5-$ $\mathbf{C H}_{3} \mathbf{C N}$), was generated by addition of $\mathrm{CH}_{3} \mathrm{CN}$ to 5 . The structure of $\mathbf{5}-\mathbf{C H}_{\mathbf{3}} \mathbf{C N}$, free of disorder, is shown in Figure 1. The ortho-Cl

Figure 1. ORTEP views of the cations of $\mathbf{1}-d_{5}, \mathbf{5}-\mathbf{C H}_{3} \mathbf{C N}, \mathbf{6}$, and $\mathbf{7}-d_{5}$. H/D atoms are omitted.
is datively bonded to Zr and occupies the central coordination site. The $\mathrm{Zr}-\mathrm{Cl}$ distance $(2.831(1) \AA$) is longer than the $\mathrm{Zr}-\mathrm{ClPh}$ distance in $\mathbf{1}-d_{5}$. The $\mathrm{C}-\mathrm{Cl}$ distance $(1.775(4) \AA)$ is similar to that in free chlorobenzene.
$\mathbf{6}$ was generated quantitatively by reaction of $\mathbf{5}$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ (6 days, $23{ }^{\circ} \mathrm{C}$). X-ray analysis (Figure 1) shows that $\mathbf{6}$ contains a cyclopentadiene-phenyl ligand that is η^{4}-coordinated through $\mathrm{C}(1)-\mathrm{C}(4)$ and σ-coordinated through $\mathrm{C}(21)$, and formally is derived by insertion of benzyne into a $\mathrm{Zr}-\mathrm{C}_{\mathrm{Cp}^{*}}$ bond. The $\mathrm{Zr}-$ $\mathrm{C}(5)$ distance (2.803(3) \AA) is longer than the distances between Zr and $\mathrm{C}(1)-\mathrm{C}(4)(2.638(3)-2.699(3) \AA)$. Bond length alternation in the $C(1)-C(5)$ ring, displacement of $C(5)$ by $0.113(3) \AA$ from the $\mathrm{C}(1)-\mathrm{C}(4)$ plane, and sp^{3} hybridization of $\mathrm{C}(5)$ are all indicative of an η^{4}-cyclopentadiene structure. The NMR data for $\mathbf{6}$ are fully consistent with the solid-state structure.
$\mathbf{7 -} d_{5}$ was prepared independently (100%) by the reaction of $\mathbf{2 d}$ d_{5} with $\mathrm{Me}_{3} \mathrm{SiCl}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ (Scheme 1). X-ray analysis (Figure 1) shows that $7-d_{5}$ contains a terminal $\mathrm{Zr}-\mathrm{Cl}$ ligand and an $\eta^{1}-\mathrm{ClPh}$ ligand. The $\mathrm{Zr}-\mathrm{ClPh}$ distance $(2.698(1) \AA$) is similar to that in $1-d_{5}$, and the $\mathrm{Cl}-\mathrm{Ph}$ distance $(1.784(5) \AA$) is slightly elongated. The $\mathrm{Zr}(1)-\mathrm{Cl}(1)-\mathrm{C}(21)$ angle is $118.5(1)^{\circ}$, and the ClPh ring points toward the terminal $\mathrm{Zr}-\mathrm{Cl}(\mathrm{C}(21)-\mathrm{Cl}(1)-\mathrm{Zr}(1)-\mathrm{Cl}(2)$ dihedral angle $\left.=43.7(2)^{\circ}\right)$. Reaction of $7-d_{5}$ with $\left[\mathrm{NBu}_{3} \mathrm{CH}_{2} \mathrm{Ph}\right] \mathrm{Cl}$ yields $\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrCl}_{2}$ quantitatively.

The observation of $\mathrm{CH}_{3} \mathrm{D}$ as the major organic product in the formation of $\mathbf{5}-d_{4}$ from $\mathbf{2 d}-d_{5}$, and the faster formation of $\mathbf{5}$ from in situ generated $\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrH}^{+}(10 \mathrm{~min})$ than from $2 d$ itself (>1 day), is consistent with Cl -directed ortho- $\mathrm{C}-\mathrm{H}$ activation via a σ-bond metathesis process.

Two plausible mechanisms for the conversion of $\mathbf{5}$ to $\mathbf{6}$ are shown in Scheme 2. Path i involves β - Cl elimination of 5 to form a $\mathrm{Zr}(\mathrm{IV})$ benzyne intermediate, $\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrCl}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)^{+}(\mathbf{8})$, followed by benzyne insertion into a $\mathrm{Zr}-\mathrm{C}_{\mathrm{Cp}^{*}}$ bond. Jones showed that thermolysis of $\mathrm{Cp}^{*}{ }_{2} \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{H}$ to form $\mathrm{Cp}^{*} \mathrm{Zr}^{2}\left(o-\mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{H}\right) \mathrm{F}$ proceeds via a similar benzyne intermediate, $\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrHF}\left(\mathrm{C}_{6} \mathrm{~F}_{4}\right)$, and was able to trap the $\mathrm{C}_{6} \mathrm{~F}_{4}$ group as the durene adduct. ${ }^{12 \mathrm{a}}$ Path ii involves direct nucleophilic displacement of the activated chloride of $\mathbf{5}$ by attack of a $\mathrm{Zr}-\mathrm{C}_{\mathrm{Cp}}$ b bond at C 2 . A related $\mathrm{S}_{\mathrm{N}} \mathrm{Ar} 2$ mechanism was invoked to explain the formation of $\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrHF}$ and arene in the reactions of $\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrH}_{2}$ with fluoroarenes. ${ }^{12 \mathrm{~b}}$

Scheme 2

To probe the mechanism of conversion of $\mathbf{5}$ to $\mathbf{6}$, the p-Mesubstituted complex $\left[\mathrm{Cp}^{*} 2 \mathrm{Zr}\left(\eta^{2}-\mathrm{C}, \mathrm{Cl}-2-\mathrm{Cl}-5-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (9) was generated by the reaction of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrMe}\left(p-\mathrm{Cl}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)\right]-$ $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with H_{2}, and its reactivity was studied (Scheme 2). Complex 9 rearranges to $\left[\left\{\eta^{4}, \eta^{1}-\mathrm{C}_{5} \mathrm{Me}_{5}-\left(4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right\} \mathrm{Cp} * \mathrm{ZrCl}\right]-$
$\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{1 0})$ quantitatively (2 days, $23^{\circ} \mathrm{C}$). A ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY correlation between the resonance of the Me group bound to the cyclopentadiene sp^{3} carbon and a singlet aromatic hydrogen resonance establishes that the aryl-Me group is located at C 4 , para to Zr . This result is consistent with path i and the exclusive attack of Cp * at the lateral benzyne $\mathrm{C} \equiv \mathrm{C}$ carbon without benzyne rotation, but rules out path ii, which would generate the $\mathbf{5 - M e}$ isomer of $\mathbf{1 0}$ (i.e., 11). Attempts to trap benzyne from the proposed $\mathrm{Cp}^{*} \mathrm{ZrCl}^{2}$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)^{+}$intermediate in the reaction of 5 were unsuccessful, implying that the benzyne is more strongly bound than that in $\mathrm{Cp}^{*} 2^{-}$ $\mathrm{ZrHF}\left(\mathrm{C}_{6} \mathrm{~F}_{4}\right) \cdot{ }^{12 \mathrm{a}}$ Stronger benzyne coordination is expected for cationic versus neutral species, and for nonfluorinated versus fluorinated benzynes, since d- π^{*} back-bonding is not possible in these d^{0}-metal systems.

These results show that $\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{ZrR}^{\prime+}$ species can be stabilized by intermolecular (1, 2, and 7) and intramolecular (5,5-CH3 $\mathbf{~} \mathbf{C N}$, and 9) $\mathrm{Zr} \cdots \mathrm{ClPh}$ coordination. Noncrowded $\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{ZrR}^{\prime}(\mathrm{ClPh})^{+}$ species are thermally robust but are converted to $\left[\left\{\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{Zr}\right.\right.$ -$\left.(\mu-\mathrm{Cl})\}_{2}\right]^{2+}$ species by a photochemical process in ClPh solution. In contrast, $\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrR}^{\prime}(\mathrm{ClPh})^{+}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$ or H$)$ undergoes facile thermal ortho- $\mathrm{C}-\mathrm{H}$ activation to yield $\mathbf{5}$, which rearranges to $\mathbf{6}$ via β - Cl elimination and benzyne insertion into a $\mathrm{Zr}-\mathrm{C}_{\mathrm{Cp}^{*}}$ bond. The higher thermal reactivity of $\mathbf{2 d}$ versus that of $\mathbf{1}$ and $\mathbf{2 b}, \mathbf{c}$ is attributed to steric crowding involving the Cp^{*} ligands, which forces a ClPh ortho-hydrogen close to the $\mathrm{Zr}-\mathrm{Me}$ group in 2d. ${ }^{13}$ Efforts to exploit the Cl -directed $\mathrm{C}-\mathrm{H}$ activation chemistry in synthetic applications are in progress.

Acknowledgment. We thank the National Science Foundation for support (CHE-0212210), and Dr. Ian Steele for X-ray analyses.

Supporting Information Available: Experimental procedures and characterization data (PDF). Crystallographic data for $\mathbf{1}-d_{5}, \mathbf{5}-\mathbf{C H}_{3} \mathbf{C N}$, 6, and $7-d_{5}$ (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Kulawiec, R. J.; Crabtree, R. H. Coord. Chem. Rev. 1990, 99, 89.
(2) (a) Ben-Ari, E.; Gandelman, M.; Rozenberg, H.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2003, 125, 4714. (b) Huhmmann-Vincent, J.; Scott, B. L.; Kubas, G. J. J. Am. Chem. Soc. 1998, 120, 6808. (c) Peng, T.; Winter, C. H.; Gladysz, J. A. Inorg. Chem. 1994, 33, 2534. (d) Huang, D.; Bollinger, J. C.; Streib, W. E.; Folting, K.; Young, V., Jr.; Eisenstein, O.; Caulton, K. G. Organometallics 2000, 19, 2281. (e) Arndtsen, B. A.; Bergman, R. G. Science 1995, 270, 1970.
(3) (a) Bochmann, M.; Jagger, A. J.; Nichollos, J. C. Angew. Chem., Int. Ed. Engl. 1990, 29, 780. (b) Horton, A. D. Organometallics 1996, 15, 2675. (c) Hayes, P. G.; Piers, W. E.; Parvez, M. J. Am. Chem. Soc. 2003, 125, 5622.
(4) (a) Plenio, H. Chem. Rev. 1997, 97, 3363. (b) Bouwkamp, M. W.; de Wolf, J.; del Hierro Morales, I.; Gercama, J.; Meetsma, A.; Troyanov, S. I.; Hessen, B.; Teuben, J. H. J. Am. Chem. Soc. 2002, 124, 12956.
(5) $\mathrm{EBI}=1,2$-ethylene(bis)indenyl, $\mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{Cp}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}, \mathrm{Cp}^{*}=\mathrm{C}_{5}{ }^{-}$ Me_{5}.
(6) $\mathbf{2 a}-\mathbf{c}-d_{5}$ are generated within 4 h at $23{ }^{\circ} \mathrm{C}$. In the first few minutes, [$\{-$ $\left.\left.\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{ZrMe}\right\}_{2} \mathrm{Me}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 a}-\mathbf{c})$ are observed by NMR. However, $\mathbf{2 d}-d_{5}$ is formed quantitatively within 10 min at $23^{\circ} \mathrm{C}$, and no intermediate is observed. For μ-Me dinuclear zirconocene cations, see: Bochmann, M.; Lancaster, S. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1634.
(7) Radii are taken from: Porterfield, W. W. Inorganic Chemistry: A Unified Approach; Addison-Wesley: Reading, MA, 1993; p 168.
(8) Penionzhkevich, N. P.; Sadova, N. I.; Vilkov, L. V. Zh. Strukt. Khim. 1979, 20, 527.
(9) Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Echols, S. C.; Willett, R. J. Am. Chem. Soc. 1987, 109, 4111.
(10) Wu, F.; Jordan, R. F. Manuscript in preparation.
(11) (a) Bercaw, J. E. Adv. Chem. Ser. 1978, 167, 136. (b) Watson, P. L.; Parshall, G. W. Acc. Chem. Res. 1985, 18, 51. (c) Schock, L. E.; Brock, C. P.; Marks, T. J. Organometallics 1987, 6, 232.
(12) (a) Kraft, B. M.; Lachicotte, R. J.; Jones, W. D. Organometallics 2002, 21, 727. (b) Kraft, B. M.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 2001, 123, 10973.
(13) The distance between $\mathrm{C}(12)$ and the closest $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ ortho-D in $1-d_{5}$ is $4.9 \AA$, and that between $\mathrm{Cl}(2)$ and the closest $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ ortho-D in 7- d_{5} is $2.7 \AA$ A.
JA044303V

